
STRANDS AND STANDARDS
COMPUTER PROGRAMMING 1

CTE®
Learning that works for Utah

CourCourse Descripse Descriptiontion
An introductory course in program engineering and applications. The course introduces students to the
fundamentals of computer programming. Students will learn to design, code, and test their own programs
while applying mathematical concepts. Teachers introduce basic coding concepts and problem-solving skills.

Intended Grade Level 9-12
Units of Credit 0.5
Core Code 35.02.00.00.030
Concurrent Enrollment Core Code 35.02.00.13.030
Prerequisite Digital Literacy, Computer Science Princi-

ples or Teacher Approval
Skill Certification Test Number 820
Test Weight 0.5
License Area of Concentration CTE and/or Secondary Education 6-12
Required Endorsement(s)
Endorsement 1 Intro to Computer Science
Endorsement 2 Programming & Software Development
Endorsement 3 Web Development
Endorsement 4 Information Technology Systems

ADA Compliant: April 2022

Computer Programming 1

2]Page REVISED: July 2021

SSTRAND 1TRAND 1

Standard 1

Standard 2

Performance Skills

Standard 1

Standard 2

Performance Skills

Students will be familiar with and use a programming language IDE (Integrated Development Environment).

Standard 1
Demonstrate concept knowledge of different languages.

• Describe the difference between an interpreted language vs a compiled language
• Identify characteristics of high-level and low-level languages

Standard 2
Demonstrate the ability to use an IDE.

• Use an IDE to develop, compile, and run programs
• Understand the difference between syntax, run-time, and logic errors
• Use the debugger to identify errors

Performance Skills
Use an IDE to create a solution to solve a problem.

SSTRAND 2TRAND 2
Students will understand program development methodology and best practices.

Standard 1
Demonstrate the ability to use good programming style.

• Demonstrate proper use of white space (between lines and indentation)
• Use appropriate naming conventions for identifiers (variables, methods, functions, and file names)
• Understand the appropriate use of constants versus variables in programming style
• Construct identifiers with meaningful format; camelCase and underscore
• Implement appropriate output formatting (decimal places, dollar signs, and correct placement of

variable data in a sentence)

Standard 2
Understand the ordered software development life cycle.

• Requirements Analysis: Identify specifications and understand requirements to create a solution to a
problem

• Planning/Design: Design an algorithm to solve the problem using appropriate documentation (UML
diagrams and pseudocode).
• Define an algorithm
• Break the problem down into its subcomponents using top-down design

• Implementation: Write the code, with comments, to implement the algorithm
• Testing: Test program for verification of errors and proper functionality
• Release and Maintenance: Release the solution and provide updates when necessary

Performance Skills
Demonstrate knowledge of program development methodology through a project.

Computer Programming 1

3]Page REVISED: July 2021

SSTRAND 3TRAND 3

Standard 1

Standard 2

Standard 3

Standard 4

Standard 5

Students will understand and implement key programming concepts.

Standard 1
Understand and implement input and output commands.

• Understand the difference between input and output
• Understand there are different types of input (file, keyboard, mouse, microphone)
• Understand there are different types of output (speakers, monitor, printer, file)
• Write a program that receives input from a keyboard and produces output to the display

Standard 2
Understand and implement data types and variables.

• Differentiate between primitive data types (boolean, integer, float and string)
• Identify proper use of primitive data types (when to use one versus another)
• Declare a variable and assign it a value using the assignment operator
• Understand the difference between declaring and initializing a variable

Standard 3
Understand and implement operators and operands.

• Use basic arithmetic operators (modulus, multiplication, integer division, float division, addition,
subtraction)

• Use basic comparison operators (<, >, ==, >=, <=)
• Use basic assignment operator (=)
• Understand order of operations for all operators

• Parenthesis
• Exponent
• Multiplication
• Division
• Modulus
• Addition
• Subtraction

• Use basic logical operators (AND, OR, NOT)
• Use operands in conjunction with arithmetic, relational, and logical operators

Standard 4
Understand and implement expressions in a program.

• Understand how operators and operands are used to form expressions
• Identify and implement syntactically correct expressions

• Possible examples: A OR B, 5==6, x != 3.142, x = 4, y + 7

Standard 5
Understand and implement functions.

• Understand and properly define scope, local variable, and global variable
• Understand what functions are and what are they used for (readability, reusability, modularity,

abstraction)
• Understand the difference between a built-in function and user defined function
• Utilize built-in functions
• Understand that functions may or may not require arguments (input(s))
• Understand that functions may or may not return value(s) (output(s))

Computer Programming 1

4]Page REVISED: July 2021

Standard 6

Performance Skills

Standard 1

Standard 2

Standard 6
Understand and implement complex data types.

• Understand the difference between a simple and complex data types
• Declare a string variable in a program

Performance Skills
Write one or more programs that demonstrate effective use of the key programming concepts defined in
Strand 3.

SSTRAND 4TRAND 4
Understand and implement control structures.

Standard 1
Understand and implement IF statements in a program.

• IF
• Understand when to use an IF statement
• Demonstrate correct use of an IF statement

• ELSE-IF
• Understand when to use an ELSE-IF statement
• Demonstrate correct use of ELSE-IF statements

• ELSE
• Understand when to use an ELSE statement
• Demonstrate proper use of an ELSE statement

• Nesting IF statements
• Understand when to use a nested IF statement
• Demonstrate proper use of a nested IF statement

Standard 2
Understand and implement basic loop structures in programs.

• For-loops
• Understand when to use a for-loop
• Understand the three components of a for-loop

• An initial value (i = 0)
• A condition (i < 7)
• An update expression (i = i + 1)

• Demonstrate proper use of for-loops
• While-loops

• Understand when to use a while-loop
• Demonstrate proper use of a while-loop

• Nested loops
• Understand when to use nested loops
• Demonstrate proper use of nested loops

• Identify the various ways that loops can end (break, met condition, condition fail)
• Design loops so they iterate the correct number of times
• Understand what causes an infinite loop

Computer Programming 1

5]Page REVISED: July 2021

Standard 3

Performance Skills

Standard 1

Standard 2

Performance Skills

Workplace Skills

Standard 3
Understand and implement expressions and complex conditions in control structures.

• Create expressions using relational operators
• Example: (a > 6, x != 7, y > 4)

• Form complex conditions using logical operators
• Example: (a > 6 AND x != 7 OR y > 4)

• Incorporate complex conditions in loop structures
• Example: While a player’s health is greater than 50 and player is not dead

Performance Skills
Write one or more programs that demonstrate effective use of control structures.

SSTRAND 5TRAND 5
Students will be aware of career opportunities in the Computer Programming/Software Engineering industry
and ethical applications.

Standard 1
Investigate career opportunities, trends, and requirements related to computer programming/software
engineering careers.

• Identify the members of a computer programming/software engineering team:
• team leader
• analyst
• senior developer
• junior developer
• client/subject matter expert

• Describe work performed by each member of the computer programming/software engineering team
• Investigate trends and traits associated with computer programming/software engineering careers

(creativity, technical, leadership, collaborative, problem solving, design, etc.)
• Discuss related career pathways

Standard 2
Understand current ethical issues dealing with computer programming and information in society.

• Explain the impact software can have on society (i.e., privacy, piracy, copyright laws, ease of use, etc.)
• Explain the ethical reasons for creating reliable and robust software
• Describe how computer-controlled automation affects a workplace and society

Performance Skills
Develop awareness of career opportunities in the computer programming/software engineering industry
ethical applications.

Workplace Skills
Workplace Skills taught:

• Communication
• Problem Solving
• Teamwork
• Critical Thinking
• Dependability
• Accountability
• Legal requirements / expectations

Computer Programming 1

6]Page REVISED: July 2021

Skill Certification Test Points by StrandSkill Certification Test Points by Strand
Test Name Test # Number of Test Points by Strand Total Points Total Questions

1 2 3 4 5 6 7 8 9 10

COMPUTER PROGRAMMING 1

Computer Programming 1 – VOCABULARY

Strand 1 - Students will be familiar with and use a programming language IDE
(Integrated Development Environment).

IDE (Integrated Development
Environment

Software for building applications that combines common
developer tools in a single interface.

Interpreted Language Source code is read and executed by an interpreter

Compiled Language Source code is translated into machine code, and the
machine code is stored in a separate file.

High-Level Language Programming Language that enables a programmer to
write programs that are closer to human language.

Low-Level Language Programming language that contains basic instructions
recognized by a computer.

Syntax Error Error which is detected and prevents the program from
running.

Run-Time Error Error in the code that occurs while the program is running.

Logic Error Mistake in the code that produces incorrect results.

Debugging Finding and fixing problems in an algorithm or program.

Software Development Life
Cycle

A process that produces software with the highest quality

and lowest cost in the shortest time possible

Strand 2 - Students will understand program development methodology and best
practices.

White Space Blank lines and extra spacing to improve readability of
code.

Identifiers Names given to variables, constants, methods, and
functions.

Variable A named value within a program.

Function A named group of programming instructions.

Constant Data values that stay the same every time a program is
executed.

Camel Case Naming convention where the first letter of name is
lowercase, and each new word is capitalized. (camelCase)

7]Page REVISED: July 2021

COMPUTER PROGRAMMING 1

Pascal Case Naming convention where the first letter of each compound
word is capitalized. (PascalCase)

Snake Case Naming convention where spaces are replaced with
underscores. (snake_case)

Software Development Life
Cycle

1. Requirements Analysis - Identify specifications and
understand requirements to create a solution.

2. Planning/Design - Design an algorithm to solve the
problem using appropriate documentation (UML
diagrams and pseudocode).

3. Implementation - Write the code
4. Testing - Test program for verification of errors and

proper functionality.
5. Release & Maintenance - Release the solution and

provide updates when necessary.

Algorithm A finite set of instructions that accomplish a task.

Strand 3 - Students will understand and implement key programming concepts.

Scope Determines the accessibility (visibility) of variables.

Local Variable Only recognized inside the function in which it is declared.

Global Variable Recognized from anywhere inside a program.

Input The information computers get from users, devices, or
other computers.

Output The information computers give to users, devices, or other
computers.

String An ordered sequence of characters.

Integer A data type that is used for a whole number

Boolean A data type that is either true or false.

Float A data type that is used for fractional values in decimal
format.

Declaration Stating the name and data type of a variable.

Initialization Assignment of an initial value for a variable.

Arithmetic Operators Includes addition, subtraction, multiplication, division, and
modulus operators.

Comparison Operators <, >, ≤, ≥, ==, ≠ indicate a Boolean expression.

8]Page REVISED: July 2021

COMPUTER PROGRAMMING 1

Order of Operations Parenthesis, exponents, multiplication, modulus, division,
addition, subtraction (PEMMDAS).

Logical Operators NOT, AND, and OR, which evaluate to a Boolean value.

Expression A combination of operators, constants, and variables.

Integer Division Division in which the fractional part (remainder) is
discarded.

Float Division Division in which the fractional part (remainder) is included
with a certain number of values after the decimal.

Function A named group of programming instructions

Readability The ease with which the code is read and understood.

Reusability Capability of being used again or repeatedly.

Modularity Enables reusability and minimizes duplication.

Abstraction Hiding unnecessary details from the user.

Built-In Function Any function that is provided as part of a high-level
language and can be executed by a simple reference with
specification of arguments.

User-Defined Function A function created by the user.

Arguments The variables given to the function for execution.

Parameters The names listed in the method/function’s definition.

Return A value that is sent back to the user by a method/function.

Void Return Indicates that the function does not return a value.

Simple Data Types char, string, integer, float, double, boolean.

Complex Data Types enumeration, array, list, object.

Strand 4 - Understand and implement control structures

Conditional Statement Decision making based on a Boolean value.

Nested IF Statement An if statement placed inside another if statement.

For Loop Initial Value
Condition

9]Page REVISED: July 2021

COMPUTER PROGRAMMING 1

Increment/Decrement

While Loop Loops through a block of code as long as a specified
condition is true.

Nested Loop A loop placed inside another loop.

Break Statement used to immediately terminate a loop.

Met Condition Expression evaluates to true.

Failed Condition Expression evaluates to false.

Iterate Each cycle through a loop.

Infinite Loop A loop that, due to a logic error, will continue endlessly.

Complex Condition Formed by combining multiple conditions with logical
operators.

Exit Condition Used to exit a loop.

Strand 5 - Students will be aware of career opportunities in Computer
Programming/Software Engineering industry and ethical applications.

Computer
Programming/Software
Engineering Team

Team Leader
Analyst
Senior Developer
Junior Developer
Client/Subject-Matter Expert

10]Page REVISED: July 2021

COMPUTER PROGRAMMING 1

Computer Programming 1 – Skills Reference Sheet

Assignment, Display, and Input

a = expression Evaluates expression and then assigns a copy of the result

to the variable a.

DISPLAY(expression) Displays the value of (expression) in the console window.

INPUT() Accepts a value from the user and returns the input value.

Arithmetic Operators and Numeric Procedures

a + b

a - b

a * b

a / b

The arithmetic operators +, -, *, and / are used to perform

arithmetic on a and b.

For example, 17 / 5 evaluates to 3.4.

The order of operations used in mathematics applies when
evaluating expressions.

a MODULUS b

-or-

a MOD b

Evaluates to the remainder when a is divided by b.

For example, 17 MOD 5 evaluates to 2.

MODULUS (MOD) has the same precedence as the * and /

operators.

Relational and Boolean Operators

NOT condition Evaluates to true if condition is false; otherwise

evaluates to false.

condition1 AND

condition2

Evaluates to true if both condition1 and condition2 are

true; otherwise evaluates to false.

condition1 OR

condition2

Evaluates to true if condition1 is true or if condition2

is true or if both condition1 and condition2 are true;

otherwise evaluates to false.

FOR(condition)

{

<block of

statements>

}

The code in <block of statements> is executed a certain

number of times.

11]Page REVISED: July 2021

COMPUTER PROGRAMMING 1

WHILE(condition) The code in <block of statements> is repeated until the
{ (condition) evaluates to false.

<block of

statements>

}

IF(condition1)

{

<first block of

statements>

{

ELSE IF(condition2)

{

<second block of

statements>

}

ELSE

{

<third block of

statements>

}

If (condition1) evaluates to true, the code in <first

block of statements> is executed; if (condition1)

evaluates to false, then (condition2) is tested; if

(condition2) evaluates to true, the code in <second

block of statements> is executed; if both (condition1)

and (condition2) evaluate to false, then the code in

<third block of statements> is executed.

Procedures and Procedure Calls

PROCEDURE procName() Defines procName as a procedure that takes no arguments.
{ The procedure contains <block of statements>.

<block of

statements> The procedure procName can be called using the following
}

notation:

procName()

12]Page REVISED: July 2021

Accessibility Report

		Filename:

		COMPUTER PROGRAMMING 1.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

	Test Name: Computer Programming
	Test Number: 820
	Strand #: 4
	Strand # 2: 7
	Strand # 3: 16
	Strand # 4: 14
	Strand # 6: 3
	Strand # 7:
	Strand # 8:
	Strand # 9:
	Strand # 10:
	Strand # 11:
	Test Number 2: 44
	Test Number 3: 40

