Core Content

Cluster Title: Use complex numbers in polynomial identities and equations.

Standard N.CN.8 (+): Extend polynomial identities to the complex numbers. (For example, rewrite $x^2 + 4$ as (x + 2i)(x - 2i).)

Concepts and Skills to Master

• Express a quadratic as a product of two complex factors.

Supports for Teachers

Critical Background Knowledge			
Factor quadratics.			
Understand that some quadratic functions have complex solutions.			
Know the definition of <i>i</i> .			
Perform operations on complex numbers.			
Standard form of a complex number.			
Academic Vocabulary			
conjugates, complex numbers, i, factor			
Suggested Instructional Strategies		esources	
Demonstrate that any binomial quadratic expression can be			
expressed as the difference of two squares (e.g., $x^2 + 16 = x^2 - 16i^2$).			
Sample Formative Assessment Tasks			
Skill-Based Task:	Problem Task:		
Factor over the complex number system.	Expand the expression $(x+3)(x-5i)(x+5i)$ two ways:		
$x^{2} + 16$ Answer: $(x+4i)(x-4i)$	A. $[(x+3)(x-5i)](x+5i)$		
$x^2 - 10x + 34$ Answer: $(x + 5i)(x - 5i)$	B. $(x+3)[(x-5i)(x+5i)]$		
	Compare and contrast the methods.		

Core Content

Cluster Title: Use complex numbers in polynomial identities and equations.

Standard N.CN.9 (+): Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.

Concepts and Skills to Master

• Know that the Fundamental Theorem of Algebra guarantees that any quadratic function will have a solution in the complex number system.

Supports for Teachers

Critical Background Knowledge

- Solve quadratic equations.
- Know the definition of a complex number (Sec II:N.CN.1).
- Understand the mathematical definition of closure.

Academic Vocabulary

Fundamental Theorem of Algebra, solutions, complex, roots, real number system, complex number system, algebraically closed, multiplicity

Suggested Instructional Strategies		Resources	
Relate the types of solutions to the different number system	tem.		
 Connect to the need of different number systems. 			
Sample Formative Assessment Tasks			
Skill-Based Task:	Problem Task	(:	
In the system of integer numbers, explain why there is no	Why is it better to solve quadratic equations in the complex		
answer to the equation: $3x = 5$.	number syster	n rather than in the real number system?	
In the system of rational numbers, explain why there is no			
answer to the equation: x^2 +5=0.			