
Utah 6-12
Computer
Science
Standards
Fall 2019

Utah State Board of Education

ADA Compliant: December 2019

Utah 6-12 Computer Science Standards November 8, 2019

Introduction:

The Utah State Board of Education (USBE) formed a Computer Science Taskforce (Taskforce)
to establish a Vision of Computer Science in the Public Education System. The Taskforce met
multiple times to identify a strategic plan of recommendations to successfully carry out
computer science education within the K-12 schools. In June 2018, the Taskforce's strategic
priorities (steps) to accomplish the vision were presented to and subsequently accepted by the
USBE. The priorities are as follows:

● Develop and implement statewide K-12 framework for computer science.
● Start early by engaging students at the elementary level.
● Develop a statewide strategy to communicate the value of computer science.
● Build capacity among educators at pre-service and in-service levels.
● Improve upon current course requirements to scaffold computer science learning K-12.
● Regardless of location, ensure students can access a majority of the 30+ computer

science and IT courses currently offered (popular courses include Computer
Programming 1, Computer Science Principles, Exploring Computer Science, Web
Development 1, and Game Development).

The first strategic priority, Utah Computer Science K-12 Framework1, has been developed and
approved by the USBE. Implementation of the framework is the next step within the strategic
priority.

Utah teachers, principals, district leaders, and university professors worked with the USBE in

March 2019 to develop K-5 Computer Science Standards. The writers used the Utah
Computer Science K-12 Framework2 and the K-12 Computer Science Framework3 to identify
important concepts and practices to inform the creation of standards for each grade level.

1 Utah Computer Science K-12 Framework. (October 2018). Retrieved from: https://schools.utah.gov/file/46d4ca37-9d23-414e-91fd-
6640b6be9df6
2 Utah Computer Science K-12 Framework. (October 2018). Retrieved from: https://schools.utah.gov/file/46d4ca37-9d23-414e-91fd-
6640b6be9df6
3 K-12 Computer Science Framework. (October 2016) Retrieved from: https://k12cs.org/wp- content/uploads/2016/09/K%E2%80%9312-
Computer-Science-Framework.pdf
1 | P a g e

https://schools.utah.gov/file/46d4ca37-9d23-414e-91fd-6640b6be9df6
https://schools.utah.gov/file/46d4ca37-9d23-414e-91fd-6640b6be9df6
https://schools.utah.gov/file/46d4ca37-9d23-414e-91fd-6640b6be9df6
https://schools.utah.gov/file/46d4ca37-9d23-414e-91fd-6640b6be9df6
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf

Utah 6-12 Computer Science Standards November 8, 2019

Utah Computer Science Vision Statement:

Each student in secondary public schools will have access to robust and varied computer
science courses by 2022. All students will enter secondary schools with exposure to
computational thinking and competencies in digital literacy. This begins in our elementary
schools with competencies in keyboarding, appropriate and responsible use of technology, and
basic coding principles.

Organization of Standards:

The Utah 6-12 Computer Science standards are organized into strands, which represent
significant areas of learning within content areas. Within each strand are standards. A standard
is an articulation of the demonstrated proficiency to be obtained. A standard represents an
essential element of the learning that is expected. While some standards within a strand may
be more comprehensive than others, all standards are essential for mastery.

Within the standards there are words that are bold, underlined, and in green text. For example,
look at Standard 6.NI.1.

Standard 6.NI.1 Explain potential security threats and practice practical
measures to reduce these threats.

(Practice 4: Developing and Using Abstractions)

Green text demonstrates an alignment to the practice language that is highlighted at the
conclusion of each standard.

The bold and underlined text, such as security threats, is included in the standards glossary
at the conclusion of the document.

2 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

Strand Language4

Computing Systems (CS):

People interact with a wide variety of computing devices that collect, store, analyze, and
act upon information in ways that can affect human capabilities, both positively and
negatively. The physical components (hardware) and instructions (software) that make
up a computing system communicate and process information in digital form. An
understanding of hardware and software is useful when troubleshooting a computing
system that does not work as intended.

Network and the Internet (NI):

Computing devices typically do not operate in isolation. Networks connect computing
devices to share information and resources and are an increasingly integral part of
computing. Networks and communication systems provide greater connectivity in the
computing world by providing fast, secure communication and facilitating innovation.

4 K-12 Computer Science Framework. (October 2016) Retrieved from: https://k12cs.org/wp-
content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.p
3 | P a g e

https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf

Utah 6-12 Computer Science Standards November 8, 2019

Data and Analysis (DA):

Computing systems exist to process data. The amount of digital data generated in
the world is rapidly expanding, and the need to process data effectively is
increasingly important. Data is collected and stored so it can be analyzed to better
understand the world and make more accurate predictions.

Algorithms and Programming (AP):

An algorithm is a sequence of steps designed to accomplish a specific task.
Algorithms are translated into programs, or code, to provide instructions for computing
devices. Algorithms and programming control all computing systems, empowering
people to communicate with the world in new ways and solve compelling problems.
The development process to create meaningful and efficient programs involves
choosing which information to use and how to process and store it, breaking apart
large problems into smaller ones, recombining existing solutions, and analyzing
different solutions.

Impacts of Computing (IC):

Computing affects many aspects of the world in both positive and negative ways at
local, national, and global levels. Individuals and communities influence computing
through their behaviors and cultural and social interactions, and in turn, computing
influences new cultural practices. An informed and responsible person should
understand the social implications of the digital world, including equity and access to
computing.

4 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

Practice Language5:

Practice 1: Fostering an Inclusive Computing Culture

Building an inclusive and diverse computing culture requires strategies for
incorporating perspectives from people of different genders, ethnicities,
backgrounds, and abilities. Incorporating these perspectives involves
understanding the personal, ethical, social, economic, and cultural contexts in
which people operate. Considering the needs of diverse users during the design
process is essential to producing inclusive computational products.

By the end of Grade 12, students should be able to:

1. Include the unique perspectives of others and reflect on one’s own perspectives
when designing and developing computational products.
At all grade levels, students should recognize that the choices people make when they create artifacts are
based on personal interests, experiences, and needs. Students who are well-versed in fostering an
inclusive computing culture should be able to differentiate backgrounds and skill sets and know when to
call upon others, such as to seek out knowledge about potential end users or intentionally seek input from
people with diverse backgrounds.

2. Address the needs of diverse end users during the design process to produce
artifacts with broad accessibility and usability.

At any level, students should recognize that users of technology have different needs and preferences
and that not everyone chooses to use, or is able to use, the same technology products. At the higher
grades, students should become aware of professionally accepted accessibility standards and should be

5 K-12 Computer Science Framework. (October 2016) Retrieved from: https://k12cs.org/wp-
content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
5 | P a g e

https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf

Utah 6-12 Computer Science Standards November 8, 2019

able to evaluate computational artifacts for accessibility. Students should also begin to identify potential
bias during the design process to maximize accessibility in product design. For example, they can test an
app and recommend to its designers that it respond to verbal commands to accommodate users who are
blind or have physical disabilities.

3. Employ self- and peer-advocacy to address bias in interactions, product design, and
development methods.

After students have experience identifying diverse perspectives and including unique perspectives, they
should begin to employ self-advocacy strategies, such as speaking for themselves if their needs are not
met. As students’ progress, they should advocate for their peers when accommodations, such as an
assistive-technology peripheral device, are needed for someone to use a computational artifact.
Eventually, students should regularly advocate for both themselves and others.

Practice 2: Collaborating Around Computing

Collaborative computing is the process of performing a computational task by working
in pairs and on teams. Because it involves asking for the contributions and feedback
of others, effective collaboration can lead to better outcomes than working
independently. Collaboration requires individuals to navigate and incorporate diverse
perspectives, conflicting ideas, disparate skills, and distinct personalities. Students
should use collaborative tools to effectively work together and to create complex
artifacts.

By the end of Grade 12, students should be able to:

1. Cultivate working relationships with individuals possessing diverse perspectives,
skills, and personalities.

At any grade level, students should work collaboratively with others. As they progress, students should
use methods for giving all group members a chance to participate. Older students should strive to
improve team efficiency and effectiveness by regularly evaluating group dynamics. They should use
multiple strategies to make team dynamics more productive. For example, they can ask for the opinions
of quieter team members, minimize interruptions by more talkative members, and give individuals credit
for their ideas and their work.

2. Create team norms, expectations, and equitable workloads to increase efficiency and
effectiveness.
After students have had experience cultivating working relationships within teams, they should gain
experience working in particular team roles. As students’ progress, they should become less dependent
on the teacher assigning roles and become more adept at assigning roles within their teams. For
example, they should decide together how to take turns in different roles. Eventually, students should
independently organize their own teams and create common goals, expectations, and equitable
workloads. They should also manage project workflow using agendas and timelines and should evaluate
workflow to identify areas for improvement.

3. Solicit and incorporate feedback from, and provide constructive feedback to, team
members and other stakeholders.
At any level, students should ask questions of others and listen to their opinions. As they progress in
school, students should provide and receive feedback related to computing in constructive ways. For
example, pair programming is a collaborative process that promotes giving and receiving feedback. Older

6 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

students should engage in active listening by using questioning skills and should respond empathetically
to others. As they progress, students should be able to receive feedback from multiple peers and should
be able to differentiate opinions. Eventually, students should seek contributors from various
environments. These contributors may include end users, experts, or general audiences from online
forums.

4. Evaluate and select technological tools that can be used to collaborate on a project.

At any level, students should be able to use tools and methods for collaboration on a project. As students’
progress, they should use technological collaboration tools to manage teamwork, such as knowledge-
sharing tools and online project spaces. They should also begin to make decisions about which tools
would be best to use and when to use them. Eventually, students should use different collaborative tools
and methods to solicit input from not only team members and classmates but also others, such as
participants in online forums or local communities.

Practice 3: Recognizing and Defining Computational Problems

The ability to recognize appropriate and worthwhile opportunities to apply computation is
a skill that develops over time and is central to computing. Solving a problem with a
computational approach requires defining the problem, breaking it down into parts, and
evaluating each part to determine whether a computational solution is appropriate.

By the end of Grade 12, students should be able to:

1. Identify complex, interdisciplinary, real-world problems that can be solved
computationally.
At any level, students should be able to identify problems that have been solved computationally. As they
progress, they should ask clarifying questions to understand whether a problem or part of a problem can
be solved using a computational approach. For example, before attempting to write an algorithm to sort a
large list of names, students may ask questions about how the names are entered and what type of
sorting is desired. Older students should identify more complex problems that involve multiple criteria and
constraints. Eventually, students should be able to identify real-world problems that span multiple
disciplines, such as increasing bike safety with new helmet technology, and can be solved
computationally.

2. Decompose complex real-world problems into manageable subproblems that could
integrate existing solutions or procedures.

At any grade level, students should be able to break problems down into their component parts. As
students’ progress, they should decompose larger problems into manageable smaller problems. For
example, young students may think of an animation as multiple scenes and thus create each scene
independently. Students can also break down a program into sub-goals: getting input from the user,
processing the data, and displaying the result to the user. Eventually, as students encounter complex real-
world problems that span multiple disciplines or social systems, they should decompose complex
problems into manageable subproblems that could potentially be solved with programs or procedures that
already exist. For example, students could create an app to solve a community problem that connects to
an online database through an application programming interface (API).

3. Evaluate whether it is appropriate and feasible to solve a problem computationally.

After students have had some experience breaking problems down and identifying subproblems that can
be solved computationally, they should begin to evaluate whether a computational solution is the most
7 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

appropriate solution for a specific problem. For example, students might question whether using a
computer to determine whether someone is telling the truth would be advantageous. As students’
progress, they should systematically evaluate the feasibility of using computational tools to solve given
problems or subproblems, such as through a cost-benefit analysis. Eventually, students should include
more factors in their evaluations, such as how efficiency affects feasibility or whether a proposed approach
raises ethical concerns.

Practice 4: Developing and Using Abstractions

Abstractions are formed by identifying patterns and extracting common features from
specific examples to create generalizations. Using generalized solutions and parts of
solutions designed for broad reuse simplifies the development process by managing
complexity.

By the end of Grade 12, students should be able to:

1. Extract common features from a set of interrelated processes or complex
phenomena.
Students at all grade levels should be able to recognize patterns. As they progress, students should
identify patterns as opportunities for abstraction, such as recognizing repeated patterns of code that could
be more efficiently implemented as a loop. Eventually, students should extract common features from
more complex phenomena or processes. For example, students should be able to identify common
features in multiple segments of code and substitute a single segment that uses variables to account for
the differences. In a procedure, the variables would take the form of parameters. When working with data,
students should be able to identify important aspects and find patterns in related data sets such as crop
output, fertilization methods, and climate conditions.

2. Evaluate existing technological functionalities and incorporate them into new designs.
At all levels, students should be able to use well defined abstractions that hide complexity. Just as a car
hides operating details, such as the mechanics of the engine, a computer program’s “move” command
relies on hidden details that cause an object to change location on the screen. As they progress, students
should incorporate predefined functions into their designs, understanding that they do not need to know
the underlying implementation details of the abstractions that they use. Eventually, students should
understand the advantages of, and be comfortable using, existing functionalities (abstractions) including
technological resources created by other people, such as libraries and application programming
interfaces (APIs). Students should be able to evaluate existing abstractions to determine which should be
incorporated into designs and how they should be incorporated. For example, students could build
powerful apps by incorporating existing services, such as online databases that return geolocation
coordinates of street names or food nutrition information.

3. Create modules and develop points of interaction that can apply to multiple situations
and reduce complexity.
After students have had some experience identifying patterns, decomposing problems, using
abstractions, and taking advantage of existing resources, they should begin to develop their own
abstractions. As they progress, students should take advantage of opportunities to develop generalizable
modules. For example, students could write more efficient programs by designing procedures that are
used multiple times in the program. These procedures can be generalized by defining parameters that
create different outputs for a wide range of inputs. Later, students should be able to design systems of
interacting modules, each with a well-defined role, that coordinate to accomplish a common goal. Within
an object-oriented programming context, module design may include defining the interactions among
objects. At this stage, these modules, which combine both data and procedures, can be designed and
8 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

documented for reuse in other programs. Additionally, students can design points of interaction, such as a
simple user interface, either text or graphical, that reduces the complexity of a solution and hides lower
level implementation details.

4. Model phenomena and processes and simulate systems to understand and evaluate
potential outcomes.

Students at all grade levels should be able to represent patterns, processes, or phenomena. As they
progress, students should understand that computers can model real-world phenomena, and they should
use existing computer simulations to learn about real-world systems. For example, they may use a
preprogrammed model to explore how parameters affect a system, such as how rapidly a disease can
spread. Older students should model phenomena as systems, with rules governing the interactions within
the system. Students should analyze and evaluate these models against real-world observations. For
example, students might create a simple producer–consumer ecosystem model using a programming
tool. Eventually, they could progress to creating more complex and realistic interactions between species,
such as predation, competition, or symbiosis, and evaluate the model based on data gathered from
nature.

Practice 5: Creating Computational Artifacts

The process of developing computational artifacts embraces both creative expression
and the exploration of ideas to create prototypes and solve computational problems.
Students create artifacts that are personally relevant or beneficial to their community
and beyond. Computational artifacts can be created by combining and modifying
existing artifacts or by developing new artifacts. Examples of computational artifacts
include programs, simulations, visualizations, digital animations, robotic systems, and
apps.

By the end of Grade 12, students should be able to:

1. Plan the development of a computational artifact using an iterative process that
includes reflection on and modification of the plan, taking into account key features, time
and resource constraints, and user expectations.
At any grade level, students should participate in project planning and the creation of brainstorming
documents. As learning progresses, students should systematically plan the development of a program or
artifact and intentionally apply computational techniques, such as decomposition and abstraction, along
with knowledge about existing approaches to artifact design. Students should be capable of reflecting on
and, if necessary, modifying the plan to accommodate end goals.

2. Create a computational artifact for practical intent, personal expression, or to address
a societal issue.
Students at all grade levels should develop artifacts in response to a task or a computational problem. As
they progress, student expressions should become more complex and of increasingly broader
significance. Eventually, students should engage in independent, systematic use of design processes to
create artifacts that solve problems with social significance by seeking input from broad audiences.

3. Modify an existing artifact to improve or customize it.
At all grade levels, students should be able to examine existing artifacts to understand what they do. As
they progress, students should attempt to use existing solutions to accomplish a desired goal. For
example, students could attach a programmable light sensor to a physical artifact they have created to

9 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

make it respond to light. Later, they should modify or remix parts of existing programs to develop
something new or to add more advanced features and complexity. For example, students could modify
prewritten code from a single-player game to create a two-player game with slightly different rules.

Practice 6: Testing and Refining Computational Artifacts

Testing and refinement are the deliberate and iterative process of improving a
computational artifact. This process includes debugging (identifying and fixing errors)
and comparing actual outcomes to intended outcomes. Students also respond to the
changing needs and expectations of end users and improve the performance,
reliability, usability, and accessibility of artifacts.

By the end of Grade 12, students should be able to:

1. Systematically test computational artifacts by considering all scenarios and using test
cases.
At any grade level, students should be able to compare results to intended outcomes. As students’
progress, they should test computational artifacts by considering potential errors, such as what will
happen if a user enters invalid input. Eventually, testing should become a deliberate process that is more
iterative, systematic, and proactive. Older students should be able to anticipate errors and use that
knowledge to drive development. For example, students can test their program with inputs associated
with all potential scenarios.

2. Identify and fix errors using a systematic process.

At any grade level, students should be able to identify and fix errors in programs (debugging) and use
strategies to solve problems with computing systems (troubleshooting). As students’ progress, they
should become more adept at debugging programs and begin to consider logic errors: cases in which a
program works, but not as desired. In this way, students will examine and correct their own thinking. For
example, they might step through their program, line by line, to identify a loop that does not terminate as
expected. Eventually, older students should progress to using more complex strategies for identifying and
fixing errors, such as printing the value of a counter variable while a loop is running to determine how
many times the loop runs.

3. Evaluate and refine a computational artifact multiple times to enhance its
performance, reliability, usability, and accessibility.
After students have gained experience testing, debugging, and revising, they should begin to evaluate
and refine their computational artifacts. As students’ progress, the process of evaluation and refinement
should focus on improving performance and reliability. For example, students could observe a robot in a
variety of lighting conditions to determine that a light sensor should be less sensitive. Later, evaluation
and refinement should become an iterative process that also encompasses making artifacts more usable
and accessible. For example, students can incorporate feedback from a variety of end users to help guide
the size and placement of menus and buttons in a user interface.

Practice 7: Communicating About Computing

Communication involves personal expression and exchanging ideas with others. In
computer science, students communicate with diverse audiences about the use and
effects of computation and the appropriateness of computational choices. Students
write clear comments, document their work, and communicate their ideas through
multiple forms of media. Clear communication includes using precise language and
10 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

carefully considering possible audiences.

By the end of Grade 12, students should be able to:

1. Select, organize, and interpret large data sets from multiple sources to support a
claim.
At any grade level, students should be able to refer to data when communicating an idea. As students’
progress, they should work with larger data sets and organize the data in those larger sets to make
interpreting and communicating it to others easier, such as through the creation of basic data
representations. Eventually, students should be able to select relevant data from large or complex data
sets in support of a claim or to communicate the information in a more sophisticated manner.

2. Describe, justify, and document computational processes and solutions using
appropriate terminology consistent with the intended audience and purpose.
At any grade level, students should be able to talk about choices they make while designing a
computational artifact. Students should provide documentation for end users that explains their artifacts
and how they function, and they should both give and receive feedback. For example, students could
provide a project overview and ask for input from users. As students’ progress, they should incorporate
clear comments in their product and document their process using text, graphics, presentations, and
demonstrations.

3. Articulate ideas responsibly by observing intellectual property rights and giving
appropriate attribution.
All students should be able to explain the concepts of ownership and sharing. They should identify
instances of remixing, when ideas are borrowed and iterated upon, and give proper attribution. They
should also recognize the contributions of collaborators. Eventually, students should consider common
licenses that place limitations or restrictions on the use of computational artifacts. For example, a
downloaded image may have restrictions that prohibit modification of an image or using it for commercial
purposes.

11 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

Grade 6

Computing Systems (CS):
People interact with a wide variety of computing devices that collect, store, analyze,
and act upon information in ways that can affect human capabilities, both positively
and negatively. The physical components (hardware) and instructions (software) that
make up a computing system communicate and process information in digital form.
An understanding of hardware and software is useful when troubleshooting a
computing system that does not work as intended.

Standard 6.CS.1 Utilize troubleshooting strategies to resolve hardware and
software issues in a logical order. (Practice 4: Developing and Using
Abstractions)

Students will be able to utilize a step-by-step approach to identify and resolve problems with hardware
and software. For example, a checklist can be used to ensure that possible solutions are not overlooked
such as checking for writing conventions before finalizing a writing assignment. Students may refer to the
order of operations when solving a math equation. Students may search for technical information online
when solving problems. A flow diagram may be used to determine possible next steps.

Network and the Internet (NI):
Computing devices typically do not operate in isolation. Networks connect computing
devices to share information and resources and are an increasingly integral part of
computing. Networks and communication systems provide greater connectivity in the
computing world by providing fast, secure communication and facilitating innovation.

Standard 6.NI.1 Explain potential security threats and practice protective measures to
reduce these threats. (Practice 4: Developing and Using Abstractions)

Students will recognize and explain the existence of threats and protect their personal information using
appropriate security measures. Students identify multiple methods for protecting their data and articulate
the value and appropriateness for each method. For example, students should develop habits such as
logging off devices and maintaining hidden, strong, evolving passphrases. Also, understanding how to
use cybersecurity to protect personal and sensitive data.

Data and Analysis (DA):
Computing systems exist to process data. The amount of digital data generated in
the world is rapidly expanding, and the need to process data effectively is
increasingly important. Data is collected and stored so it can be analyzed to better
understand the world and make more accurate predictions.

Standard 6.DA.1 Represent a single data set in multiple ways using words, symbols,
manipulatives, charts, diagrams, and visuals. (Practice 4: Developing and Using
Abstractions.)

Students will represent data in multiple ways using abstraction. For example, convert letters into binary
12 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

code, location into GPS coordinates or ideas and phrases into emojis. Students may represent a location
as a string “New Zealand” or a numeric input (longitude/latitude geolocation). Another example could be
representing colors using binary, hexadecimal, or words.

Algorithms and Programming (AP):
An algorithm is a sequence of steps designed to accomplish a specific task.
Algorithms are translated into programs, or code, to provide instructions for computing
devices. Algorithms and programming control all computing systems, empowering
people to communicate with the world in new ways and solve compelling problems.
The development process to create meaningful and efficient programs involves
choosing which information to use and how to process and store it, breaking apart
large problems into smaller ones, recombining existing solutions, and analyzing
different solutions.

Standard 6.AP.1 Design and illustrate algorithms to efficiently solve complex problems
by utilizing pseudocode and/or other descriptive methods. (Practice 3: Recognizing
and defining computational problems)

Students will decompose or design algorithms (how to instructions) utilizing pseudocode to solve complex
problems. Students will be able to decompose a real-world problem and illustrate the decision-making
process in a well-organized flowchart, storyboard, ordered directions, notations, or other method. For
example, the students might create a flowchart to illustrate which equipment to use for recess based on
the weather, play preference, and a student’s energy level.

Standard 6.AP.2 Create naming conventions for variables that support the debugging
process and incorporate these variables into a simple program. (Practice 7:
Communicating about Computing)

To make the debugging process easier, students will create and name variables that store data in a
meaningful and logical way. For example, when writing an algorithm, students will incorporate names
based on the command function such as use the variable “turn” to describe direction, “loop” for repeating
tasks.

Standard 6.AP.3 Annotate programs in order to document their use and improve
readability, testing, and debugging. (Practice 7: Communicating about computing)

Students will annotate by adding descriptors, comments or notations to describe a program for future use
and easier debugging. For example, students could add comments to describe the functionality of
different segments of code. These annotations are like those in textbooks and instruction manuals or
note-taking on a presentation slide.

Impacts of Computing (IC):
Computing affects many aspects of the world in both positive and negative ways at
local, national, and global levels. Individuals and communities influence computing
through their behaviors and cultural and social interactions, and in turn, computing
influences new cultural practices. An informed and responsible person should
understand the social implications of the digital world, including equity and access to
computing.

13 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

Standard 6.IC.1 Recognize and discuss issues of bias and accessibility in existing
technologies. (Practice 1: Fostering an inclusive computer culture. Practice 7:
Communicating about computing.)

Students will be able to recognize and discuss the usability and accessibility of various technology tools
such as apps, games, and devices acknowledging designer bias. For example, students could discuss if
devices in their school are ADA compliant and whether software they use has been designed for a
particular user or a diverse population.

14 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

Grade 7

Computing Systems (CS):
People interact with a wide variety of computing devices that collect, store, analyze,
and act upon information in ways that can affect human capabilities, both positively
and negatively. The physical components (hardware) and instructions (software) that
make up a computing system communicate and process information in digital form. An
understanding of hardware and software is useful when troubleshooting a computing
system that does not work as intended.

Standard 7.CS.1 Design modifications to computing devices in order to improve the
ways users interact with the devices. (Practice 3: Recognizing and Defining
Computational Problems.)

Students will be able to identify problems with existing computing devices or technologies and design
modifications to improve the ways users interact with those technologies. For example, students may
design changes to an existing device in order to improve accessibility for users with visual, audio,
physical, language and/or other barriers or students may redesign an existing computing device to be
more functional for an everyday user.

Network and the Internet (NI):
Computing devices typically do not operate in isolation. Networks connect computing
devices to share information and resources and are an increasingly integral part of
computing. Networks and communication systems provide greater connectivity in the
computing world by providing fast, secure communication and facilitating innovation.

Standard 7.NI.1 Model the role of protocols in transmitting data across networks and
the Internet. (Practice 7: Communication about Computing)

Students will model how protocols such as HTTP and TCP/IP allow for the transmission of data across
networks and the internet. For example, students will participate in a role play and physically act out the
data transmission process following protocols (a set of rules).

Data and Analysis (DA):
Computing systems exist to process data. The amount of digital data generated in
the world is rapidly expanding, and the need to process data effectively is
increasingly important. Data is collected and stored so it can be analyzed to better
understand the world and make more accurate predictions.

Standard 7.DA.1 Collect data using computational tools and transform the data to
make it more useful. (Practice 2: Collaborating about Computing.)

Students will use computational tools to collect and transform data in a real-world scenario or
applications. For example, students will use a Microbit circuit board to collect temperatures, soil moisture
levels, etc. and use a program/app to create a data visualization. Additionally, students may create and
administer a survey in a social studies class to aggregate data on a pertinent topic and then create a
chart or graph to better display the data.

15 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

Algorithms and Programming (AP):
An algorithm is a sequence of steps designed to accomplish a specific task.
Algorithms are translated into programs, or code, to provide instructions for computing
devices. Algorithms and programming control all computing systems, empowering
people to communicate with the world in new ways and solve compelling problems.
The development process to create meaningful and efficient programs involves
choosing which information to use and how to process and store it, breaking apart
large problems into smaller ones, recombining existing solutions, and analyzing
different solutions.

Standard 7.AP.1 Design and iteratively develop programs that combine control
structures. (Practice 5: Creating Computational Artifacts; Practice 6: Testing and
Refining Computational Artifacts)

Students will design, develop, test, and refine programs using control structures such as loops or
conditional logic statements. For example, students will create a choose your own adventure
story/presentation, a flowchart, or code a simple interactive game or animation.

Standard 7.AP.2 Seek and incorporate feedback from team members and users to
refine a solution to a programming project that meets the user’s needs. (Practice 2:
Collaborating Around Computing; Practice 6: Testing and Refining Computational
Artifacts.)

Students will collaborate to seek and incorporate feedback from team members on a team project and
use that feedback to refine their project to meet the needs of all users. For example, students will solicit
feedback from others on a programming project to improve the quality of their work and meet the needs
of all users.

Standard 7.AP.3 Systematically test and refine programs using a range of test cases.
(Practice 6: Testing and Refining Computational Artifacts.)

Students will use a variety of problem-solving processes such as the engineering design process,
decision matrix, pros and cons, or DMAIC (define, measure, analyze, improve and control) to test and
refine a project or program. Students will test and refine a computer program, an engineering artifact, or
solution. For example, students may test and refine a math program solving for surface area of different
shapes (triangles, quadrilaterals, polygons, cubes).

Standard 7.AP.4 Select and assign tasks to maintain a project timeline when
collaboratively developing computational artifacts. (Practice 2: Collaborating Around
Computing. Practice 5: Creating Computational Artifacts.)

Students will select, assign, and manage tasks within a project timeline of milestones and due dates while
collaboratively working on projects. For example, students will use tools such as storyboards, to-do lists,
team roles, and other project management tools to organize their projects and share the work across
team members and help them be more efficient in managing time and resources.

Impacts of Computing (IC):
Computing affects many aspects of the world in both positive and negative ways at
local, national, and global levels. Individuals and communities influence computing
through their behaviors and cultural and social interactions, and in turn, computing
16 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

influences new cultural practices. An informed and responsible person should
understand the social implications of the digital world, including equity and access to
computing.

Standard 7.IC.1 Compare tradeoffs associated with computing technologies that
affect people's everyday activities and career options. (Practice 1: Fostering an
Inclusive Computing Culture; Practice 7: Communicating about Computing.)

Advancements in computer technology have trade-offs. Students will consider current events related to
broad ideas, including privacy, communication, and automation. For example, driverless cars can
increase convenience and reduce accidents, but they are also susceptible to hacking. The emerging
industry will reduce the number of taxi and shared ride drivers but will create more software engineering
and cybersecurity jobs.6

6 Kansas Computer Science Standards Grades P-12. (2019) Retrieved from:
https://www.ksde.org/Portals/0/CSAS/Content%20Area%20(A-
E)/Computer%20Science/Kansas%20Computer%20Science%20Model%20Standards%20with%20Descri
ption.pdf?ver=2019-04-23-165056-093

17 | P a g e

https://www.ksde.org/Portals/0/CSAS/Content%20Area%20(A

Utah 6-12 Computer Science Standards November 8, 2019

Grade 8

Computing Systems (CS):
People interact with a wide variety of computing devices that collect, store, analyze, and
act upon information in ways that can affect human capabilities, both positively and
negatively. The physical components (hardware) and instructions (software) that make
up a computing system communicate and process information in digital form. An
understanding of hardware and software is useful when troubleshooting a computing
system that does not work as intended.

Standard 8.CS.1 Design a project that combines hardware and software components
to collect and exchange data. (Practice 5: Creating Computational Artifacts; Practice 4:
Developing and Using Abstractions)

Students will use hardware (computer, tablet, mobile device, etc.) and appropriate software (word
processing, presentation, spreadsheet, movie maker/editing, etc.) to design a project. For example,
students can create a news broadcast related to the Great Depression. For example, students can collect
information (interview) of how the depression affected each group of people, the economic impacts, and
how the depression impacted Utah’s economy.

Network and the Internet (NI):
Computing devices typically do not operate in isolation. Networks connect computing
devices to share information and resources and are an increasingly integral part of
computing. Networks and communication systems provide greater connectivity in the
computing world by providing fast, secure communication and facilitating innovation.

Standard 8.NI.1 Explain how proper protocols transmit data across networks and the
internet. (Practice 4. Developing and Using Abstractions)

Students will understand rules are developed to deliver data that is broken down into packets (smaller bits
of data) to travel across networks and the internet. Students will explain data is delivered in a fast and
secure path to avoid missing information. For example, students can create a plan of action to deliver
supplies needed in a national disaster. They will need to determine the best route(s) for quick and secure
delivery of supplies.

Data and Analysis (DA):
Computing systems exist to process data. The amount of digital data generated in the
world is rapidly expanding, and the need to process data effectively is increasingly
important. Data is collected and stored so it can be analyzed to better understand the
world and make more accurate predictions.

Standard 8.DA.3 Test and analyze the effects of changing variables in
models/simulations. (Practice 3. Recognizing and Defining Computational Problems;
Practice 4. Developing and Using Abstractions; Practice 5. Creating Computational
Artifacts)

Students will demonstrate how changing variables will affect outcomes in a model/simulation. For
example, students will understand the relationship between the mass and speed of objects and the
relative amount of kinetic energy of the objects. Students can test and analyze a full cart vs. an empty

18 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

cart or rolling spheres with different masses down a ramp to measure the effects on stationary masses.

Algorithms and Programming (AP):
An algorithm is a sequence of steps designed to accomplish a specific task. Algorithms
are translated into programs, or code, to provide instructions for computing devices.
Algorithms and programming control all computing systems, empowering people to
communicate with the world in new ways and solve compelling problems. The
development process to create meaningful and efficient programs involves choosing
which information to use and how to process and store it, breaking apart large problems
into smaller ones, recombining existing solutions, and analyzing different solutions.

Standard 8.AP.1 Develop a program with iterative protocols that combine control
structures and use compound conditions. (Practice 5. Creating Computational
Artifacts; Practice 6. Testing and Refining Computational Artifacts)

Students will develop programs that use compound conditions (True/False, If/Then, etc.) and loops. The
development process should include multiple phases and pseudocode. For example, students will
understand the relationship of cause and effect relationships in particle motion, temperature, density, and
the state of a pure substance when heat energy is added or removed. Students can create true/false and
if/then statements in the development process showing the results of adding and removing heat energy
and the cause and effect it has on different substance’s states.

8.AP.2 Create procedures with or without parameters to organize code and make it
easier to reuse. (Practice 4. Developing and Using Abstractions; Practice 5. Creating
Computational Artifacts)

Students will organize code that can be reused with or without parameters. Students will create
procedures that can identify properties of functions. Students will be able to demonstrate the properties of
two functions based on x and y values.

8.AP.3 Create a new program incorporating existing code, media, and libraries; and
give proper attribution. (Practice 2. Collaborating Around Computing; Practice 4.
Developing and Using Abstractions; Practice 5. Creating Computational Artifacts;
Practice 7. Communicating about computing)

Students will write original programs that incorporate someone else’s code and/or media and give proper
attribution to the source. Students can manipulate an existing file from a block code program (i.e. Scratch)
to demonstrate the conflicts during the American expansion as American Indians were forced from their
lands and the tensions over slavery.

19 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

Grade 9 / Grade 10

Computing Systems (CS):
People interact with a wide variety of computing devices that collect, store, analyze, and
act upon information in ways that can affect human capabilities, both positively and
negatively. The physical components (hardware) and instructions (software) that make
up a computing system communicate and process information in digital form. An
understanding of hardware and software is useful when troubleshooting a computing
system that does not work as intended.

Standard 9/10.CS.1 Describe ways in which the specific implementation details of a
computing system are hidden by abstractions in order to manage complexity. (Practice
4. Developing and Using Abstractions; Practice 7. Communicating About Computing)

Students will describe how layers of generality simplify the users experience by hiding many of the
complex details. For example, the summation symbol Σ indicates that you are adding all terms instead of
writing each term individually with plus signs in between. Students could also explain the challenges Alan
Turing faced and the process he used in breaking Enigma.

Standard 9/10.CS.2. Identify the different levels of abstraction in a computer system.
(Practice 4. Developing and Using Abstractions; Practice 7: Communicating About
Computing)

Students will identify different layers of computing abstraction which could include applications, operating
systems, and hardware. For example, an educational app (ex. CANVAS) utilizes the phone’s hardware
and communicates to the “app” on the phone to send assignments to teachers or comment on a
discussion board. Another example of this is describing the functions of the different systems of the body
and how they work together to make the body function.

Standard 9/10.CS.3 Develop guidelines that communicate systematic troubleshooting
strategies that others can use to identify and fix errors. (Practice 6. Testing and Refining
Computational Artifacts.)

Students will develop strategies for troubleshooting and fixing problems and/or errors in a system.
Examples of complex troubleshooting strategies include resolving connectivity problems, adjusting
system configurations and settings, ensuring hardware and software compatibility, and transferring data
from one device to another. Students could create a flow chart, a job aid for a help desk employee, or an
expert system.7 For example, students will design a solution to a space exploration challenge by breaking
it down into smaller, more manageable problems that can be solved through the structure and function of
a device. Define the problem, identify criteria and constraints, develop possible solutions using models,
analyze data to make improvements from iteratively testing solutions, and optimize a solution. Examples
of problems could include, cosmic radiation exposure, transportation on other planets or moons, or
supplying energy to space travelers.

Network and the Internet (NI):
Computing devices typically do not operate in isolation. Networks connect computing
devices to share information and resources and are an increasingly integral part of
computing. Networks and communication systems provide greater connectivity in the

7 CSTA standards https://www.csteachers.org/page/standards
20 | P a g e

https://www.csteachers.org/page/standards

Utah 6-12 Computer Science Standards November 8, 2019

computing world by providing fast, secure communication and facilitating innovation.

Standard 9/10.NI.1 Describe essential elements for connecting to a network and
identify issues that impact network functionality. (Practice 7: Communicating About
Computing.)

Students will describe which hardware, software, and information are needed to connect to the internet.
Students will also identify issues that might slow down a network connection (overloaded cell phone
towers, sporting events, and natural disasters). Teachers may utilize an online network simulator to
demonstrate network functionality.

Standard 9/10.NI.2 Describe the design structure of the internet and identify standard
protocols. (Practice 4: Developing and Using Abstractions)

Students will describe how the internet is designed to have multiple paths to any two things that are
connected, in case one path is compromised. They will also describe how standard rules allow everything
to connect to one network. For example, students can discuss how they can drive home using a different
path if the road is closed on one possible path. They can also discuss how the traffic rules help them
travel safely.

Data and Analysis (DA):
Computing systems exist to process data. The amount of digital data generated in the
world is rapidly expanding, and the need to process data effectively is increasingly
important. Data is collected and stored so it can be analyzed to better understand the
world and make more accurate predictions.

Standard 9/10.DA.1 Demonstrate different representations of data (numbers,
characters, and images). (Practice 4: Developing and Using Abstractions)

Students will be able to represent data or information in different forms. For example, students will
decipher a message in binary code using an alphanumeric key. Students will understand that images or
logos could be used to portray information as well.

Standard 9/10.DA.2 Describe disadvantages or benefits associated with how data
elements are organized and stored. (Practice 3. Recognizing and Defining
Computational Problems; Practice 7: Communicating About Computing)

Students will describe the properties for a given data set or proper storage choice considering a specific
problem [file types, compression (Lossy vs. Lossless), speed, file size, accessibility]. For example,
students will determine the best option for storing photos or music, whether it be on mobile vs computer
vs cloud and describe the benefits or costs associated with each method.

Standard 9/10.DA.3 Create data visualizations to help others better understand real-
world phenomena or factual data information. (Practice 5. Creating Computational
Artifacts; Practice 7: Communicating About Computing; Practice 4. Developing and
Using Abstractions)

Students will create data visualizations using factual data to better interpret the information. For example,
students could develop a chart marking the stock market trends and pertinent historic events (either
societal or technological events) to see what types of events affect the stock market in a negative or
positive manner.

21 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

Algorithms and Programming (AP):
An algorithm is a sequence of steps designed to accomplish a specific task. Algorithms
are translated into programs, or code, to provide instructions for computing devices.
Algorithms and programming control all computing systems, empowering people to
communicate with the world in new ways and solve compelling problems. The
development process to create meaningful and efficient programs involves choosing
which information to use and how to process and store it, breaking apart large problems
into smaller ones, recombining existing solutions, and analyzing different solutions.

Standard 9/10.AP.1 Design algorithms to solve computational problems using a
combination of original and existing algorithms (Practice 3. Recognizing and Defining
Computational Problems; Practice 4: Developing and Using Abstractions)

Students will create algorithms that combine existing algorithms with their original program to complete a
certain task. For example, students could use the formula for energy of motion to construct a device that
converts one form of energy into another form of energy to solve a complex real-life problem.

Standard 9/10.AP.2 Create more generalized computational solutions using collections
of items (like an array or list) instead of separating using individual items. (Practice 4:
Developing and Using Abstractions)

Students will create groups of items using sorting methods by grouping like items together to refer to all at
once. For example, students could chart the number of immigrants by nationality that entered the United
States during the beginning of the industrial age.

Standard 9/10.AP.3 Decompose problems into multiple smaller problems through
systematic analysis, using constructs (such as procedures, modules, functions,
methods, and/or classes). (Practice 3. Recognizing and Defining Computational
Problems)

Students will break down a big or complex problem and split it into smaller, easier-to-manage
components. For example, students will find roots of polynomials by factoring them into smaller
components and then solving for each factor.

Standard 9/10.AP.4 Create computational artifacts using modular design. (Practice
5: Creating Computational Artifacts)

Students will create a computational artifact to solve a complex problem by breaking down the problems
into smaller, easier-to-manage components. For example, students can solve a complex math problem
using the order of operations.

Standard 9/10.AP.5 Identify and collaboratively suggest changes to an application’s
design using feedback from a variety of users. (Practice 7: Communicating About
Computing)

Students will identify that when they are designing a program or product for a client, they must listen to
the clients’ needs and wants as well as be willing to accept feedback from peers. For example, students
will create or redesign a company logo for a certain company, conduct focus group research on their
design, and make proper design corrections based on the feedback.

22 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

Standard 9/10.AP.6 Explain the limitations of licenses that restrict computational
artifacts when using resources created by others. (Practice 7: Communicating About
Computing)

Students will demonstrate knowledge of different copyright licenses for software use and when to give
proper reference. For example, students can research different types of patents and copyright laws that
were established during the industrial age and compare them to the intellectual property laws of modern-
day patents and licenses.

Standard 9/10.AP.7 Iteratively evaluate and refine a computational artifact to
enhance its performance, reliability, usability, and accessibility. (Practice 6: Testing and
Refining Computational Artifacts)

Students will evaluate how computational artifacts can be developed, tested, and edited repeatedly to
improve performance, ease of use, reliability, and/or accessibility. For example, students will use the
scientific method to design an air powered rocket to land hit a target from a specific distance. This could
also be a great opportunity to introduce Moore’s Law.

Standard 9/10.AP.8 Design and develop computational artifacts using collaborative
tools. (Practice 2: Collaborating Around Computing; Practice 7: Communicating About
Computing)

Students will use collaborative tools to design and develop computational artifacts as a team. For
example, students can collaborate on a presentation using cloud-based applications (Office 365, Google
suite, etc.) to complete the design and development process of a project.

Standard 9/10.AP.9 Create documentation (pseudocode) that communicates the
design of the solution to a complex problem using text, graphics, and/or demonstrations.
(Practice 7: Communicating About Computing)

Students will design solutions to problems and document these solutions—using pseudocode, flowcharts,
and other means--so that they can be implemented by either the student or someone else. During and
after implementation, comments and additional documentation can facilitate future maintenance of that
process. For example, students will create an outline for an essay before starting on the rough draft.

Impacts of Computing (IC):
Computing affects many aspects of the world in both positive and negative ways at
local, national, and global levels. Individuals and communities influence computing
through their behaviors and cultural and social interactions, and in turn, computing
influences new cultural practices. An informed and responsible person should
understand the social implications of the digital world, including equity and access to
computing.

Standard 9/10.IC.1 Evaluate how computing has impacted and/or impacts personal,
ethical, social, economic, and cultural practices. (Practice 3. Recognizing and Defining
Computational Problems; Practice 7: Communicating About Computing)

Students will determine how computing has positively and/or negatively impacted the world around us.
For example, students can research the impact computing has had on society, and as a class, be put into
affirmative and negative teams to debate the effects of computing.

Standard 9/10.IC.2 Understand that bias is always introduced when creating
23 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

computational artifacts, identify ways that this unintended bias may impact equity,
and then evaluate methods for alleviating that impact. (Practice 1: Fostering an
Inclusive Computing Culture)

Students will understand that bias may impact their work and devise solutions for overcoming that bias.
When creating computational artifacts, such as software applications, the programmer’s experience,
culture, values, and knowledge influences the design and outcome. This may inadvertently discriminate
against specific groups of users. For example, students can team up to describe how ethnicity affects
facial recognition and speech to text functionality in technology, and how to resolve those issues.

Standard 9/10.IC.3 Identify solutions to problems in other content areas using
established algorithms. (Practice 1: Fostering an Inclusive Computing Culture; Practice
2: Collaborating Around Computing)

Students will develop solutions to problems that can relate to other subject areas. They will create and
analyze a step-by-step process and apply it to a problem relevant to cross-curricular subjects. For
example, students can examine the steps involved in solving a quadratic equation.

24 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

Grade 11 / Grade 12

Network and the Internet (NI):
Computing devices typically do not operate in isolation. Networks connect computing
devices to share information and resources and are an increasingly integral part of
computing. Networks and communication systems provide greater connectivity in the
computing world by providing fast, secure communication and facilitating innovation.

Standard 11/12.NI.1 Identify types of security threats, and then compare and contrast
measures that can be used to address, resolve, and/or prevent identified threats.
(Practice 3. Recognizing and Defining Computational Problems; Practice 7:
Communicating About Computing)

Students will identify and evaluate different types of security threats and determine potential solutions
with justification. For example, students will role play or act out different security threats, in a group, while
also showing how to combat that security threat.

Standard 11/12.NI.2 Compare and contrast cryptographic techniques to model the
secure transmission of information (data). (Practice 3. Recognizing and Defining
Computational Problems; Practice 5. Creating Computational Artifacts; Practice 7:
Communicating About Computing)

Students will demonstrate an understanding of how information is transformed/manipulated via
cryptography by creating an encryption algorithm. For example, students will understand how Alan Turing
was able to break the Enigma code in World War II. Students will then create their own cypher and share
among their peers.

Data and Analysis (DA):
Computing systems exist to process data. The amount of digital data generated in the
world is rapidly expanding, and the need to process data effectively is increasingly
important. Data is collected and stored so it can be analyzed to better understand the
world and make more accurate predictions.

Standard 11/12.DA.1 Refine or create computational artifacts to better represent the
relationships among different elements of data collected from factual sources or other
processes. (Practice 3. Recognizing and Defining Computational Problems; Practice 4:
Developing and Using Abstractions; Practice 5: Creating Computational Artifacts;
Practice 6: Testing and Refining Computational Artifacts; Practice 7: Communicating
About Computing)

Students create and refine a computational model of data to explain the relationships between the
different components of the model. For example, students will write a persuasive essay comparing the
Allies and Axis of Power of World War II.

Algorithms and Programming (AP):
An algorithm is a sequence of steps designed to accomplish a specific task. Algorithms
are translated into programs, or code, to provide instructions for computing devices.
Algorithms and programming control all computing systems, empowering people to
communicate with the world in new ways and solve compelling problems. The
development process to create meaningful and efficient programs involves choosing
25 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

which information to use and how to process and store it, breaking apart large problems
into smaller ones, recombining existing solutions, and analyzing different solutions.

Standard 11/12.AP.1 Iteratively design and develop computational artifacts for
practical, personal, or societal expression that implements an algorithm based on the
result of an evaluation or user input. (Practice 2: Collaborating Around Computing
Practice 3: Recognizing and Defining Computational Problems; Practice 5: Creating
Computational Artifacts; Practice 6: Testing and Refining Computational Artifacts)

Students design and create a computational artifact that develops and implements algorithms (steps)
based on the results of an evaluation of a result or user input. For example, students can brainstorm
ideas for creating solutions to energy problems with prioritized criteria and trade-offs while considering
cost, safety, reliability, as well as possible social, cultural, and environmental impacts.

Standard 11/12.AP.2 Systematically design and create programs for broad audiences
by incorporating feedback from users. (Practice 1: Fostering an Inclusive Computing
Culture; Practice 2: Collaborating Around Computing; Practice 3. Recognizing and
Defining Computational Problems; Practice 4: Developing and Using Abstractions;
Practice 5: Creating Computational Artifacts; Practice 6: Testing and Refining
Computational Artifacts; Practice 7: Communicating About Computing)

Students will review and evaluate feedback from users and then redesign a program (process) to reflect
identified needs from user data. For example, students will create a marketing advertisement for a certain
product, conduct focus group research on their advertising design, and make proper design corrections
based on the feedback.

Standard 11/12.AP.3 Design and develop computational artifacts working in team roles
using collaborative tools. (Practice 2: Collaborating Around Computing; Practice 4:
Developing and Using Abstractions; Practice 5: Creating Computational Artifacts;
Practice 6: Testing and Refining Computational Artifacts; Practice 7: Communicating
About Computing)

Students will collaborate to design and develop multiple artifacts in teams. For example, students will
work together to develop a video game in their subject matter expert roles, which may include, writer,
programmer, artist, audio, etc.

Standard 11/12.AP.4 Produce documentation to support the decisions made during the
design and creation process using text, graphics, presentations, and/or demonstrations
in the development of complex programs. (Practice 3. Recognizing and Defining
Computational Problems; Practice 4: Developing and Using Abstractions; Practice 5:
Creating Computational Artifacts; Practice 6: Testing and Refining Computational
Artifacts; Practice 7: Communicating About Computing)

Students will produce documented decisions made during the design and creation process using text,
graphics, presentations, and demonstrations in the development of complex programs. For example,
students will create instructions to use building blocks (like LEGO’s) to instruct others to recreate their
design.

Impacts of Computing (IC):
Computing affects many aspects of the world in both positive and negative ways at
local, national, and global levels. Individuals and communities influence computing
26 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

through their behaviors and cultural and social interactions, and in turn, computing
influences new cultural practices. An informed and responsible person should
understand the social implications of the digital world, including equity and access to
computing.

Standard 11/12.IC.1 Evaluate and discuss the ways computing impacts personal,
ethical, social, economic, and cultural practices. (Practice 1: Fostering an Inclusive
Computing Culture; Practice 2: Collaborating Around Computing; Practice 3.
Recognizing and Defining Computational Problems; Practice 7: Communicating About
Computing)

Students will evaluate and discuss the ways computing impacts personal, ethical, social, economic, and
cultural practices. For example, students will research a current event that is relevant to computer
science, take a side (either pro or con), and debate their findings in class.

Standard 11/12.IC.2 Identify impacts of bias and equity deficits on design and
implementation of computational artifacts, while evaluating appropriate processes for
identifying issues of bias. (Practice 1: Fostering an Inclusive Computing Culture;
Practice 2: Collaborating Around Computing; Practice 3. Recognizing and Defining
Computational Problems; Practice 5: Creating Computational Artifacts; Practice 6:
Testing and Refining Computational Artifacts; Practice 7: Communicating About
Computing)

Students will understand that bias may impact their work and devise solutions for overcoming that bias.
When creating computational artifacts, such as software applications, the programmer’s experience,
culture, values, and knowledge influences the design and outcome. This may inadvertently discriminate
against specific groups of users. For example, students can describe how a self-driving car can decide
what action to take when every possible action leads to an accident--the programmer must account for
these possibilities and the values and culture of the programmer will inform this decision.

Standard 11/12.IC.3 Demonstrate computational thinking using algorithms to
problem solving across multiple disciplines. (Practice 3. Recognizing and Defining
Computational Problems; Practice 4: Developing and Using Abstractions; Practice 6:
Testing and Refining Computational Artifacts; Practice 7: Communicating About
Computing)

Students will demonstrate ways to problem-solve across disciplines. For example, students can use
computational thinking and patterns to predict certain genetic traits in chromosomes that will be passed
on from parents to offspring.

27 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

GLOSSARY
All glossary definitions are attributed to the K-12 Computer Science Framework (2016) and retrieved
from k12cs.org.

Term Definitions

Abstraction (process): The process of reducing complexity by focusing
on the main idea. By hiding details irrelevant to the
question at hand and bringing together related and useful
details, abstraction reduces complexity and allows one to
focus on the problem.

(product): A new representation of a thing, a system, or a
problem that helpfully reframes a problem by hiding details
irrelevant to the question at hand. [MDESE, 2016]

Algorithm A step-by-step process to complete a task.

Artifact Anything created by a human. See computational artifact
for the definition used in computer science.

Component An element of a larger group. Usually, a component
provides a particular service or group of related
services. [Tech Terms, TechTarget]

Computational
Artifacts

Anything created by a human using a computational thinking
process and a computing device. A computational artifact
can be, but is not limited to, a program, image, audio, video,
presentation, or web page file. [College Board, 2016]

Computing Any goal-oriented activity requiring, benefiting from, or
creating algorithmic processes. [MDESE, 2016]

Computing Devices A physical device that uses hardware and software to
receive, process, and output information. Computers,
mobile phones, and computer chips inside appliances are
all examples of computing devices.

Computing System A collection of one or more computers or computing devices,
together with their hardware and software, integrated for the
purpose of accomplishing shared tasks. Although a
computing system can be limited to a single computer or
computing device, it more commonly refers to a collection of
multiple connected computers, computing devices, and
hardware.

Conditionals A feature of a programming language that performs
different computations or actions depending on whether
a programmer- specified Boolean condition evaluates to
true or false. [MDESE, 2016] (A conditional could refer
to a conditional statement, conditional expression, or
conditional construct.)

28 | P a g e

https://k12cs.org

Utah 6-12 Computer Science Standards November 8, 2019

Cybersecurity The protection against access to, or alteration of, computing
resources using technology, processes, and training.
[TechTarget]

Data Information that is collected and used for reference or
analysis. Data can be digital or nondigital and can be in many
forms, including numbers, text, show of hands, images,
sounds, or video. [CAS, 2013; Tech Terms]

Debug The process of finding and correcting errors (bugs) in
programs. [MDESE, 2016]

Decompose;
Decomposition

Decompose: To break down into components.
Decomposition: Breaking down a problem or
system into components. [MDESE, 2016]

Deconstruct Reduce (something) to its constituent parts in order to
reinterpret it.

Development An inherently iterative process through which a desired
goal, target, or result is achieved.

Device A unit of physical hardware that provides one or more
computing functions within a computing system. It can
provide input to the computer, accept output, or both.
[Techopedia]

Event Any identifiable occurrence that has significance for system
hardware or software. User-generated events include
keystrokes and mouse clicks; system-generated events
include program loading and errors. [TechTarget]

Hardware The physical components that make up a computing
system, computer, or computing device. [MDESE,
2016]

Intellectual Property
Rights

Intellectual property rights are the rights given to persons
over the creations of their minds. They usually give the
creator an exclusive right over the use of his/her creation
for a certain period of time

Iterative Involving the repeating of a process with the aim of
approaching a desired goal, target, or result. [MDESE,
2016]

Loop A programming structure that repeats a sequence of
instructions as long as a specific condition is true. [Tech
Terms]

Modify Make partial or minor changes to (something), typically to
improve it or to make it less extreme.

29 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

Moore’s Law The principle that the speed and capability of computers
can be expected to double every two years, as a result
of increases in the number of transistors a microchip can
contain.

Network A group of computing devices (personal computers,
phones, servers, switches, routers, etc.) connected by
cables or wireless media for the exchange of information
and resources.

Packet The unit of data sent over a network. [Tech Terms]

Program;
Programming

program (n): A set of instructions that the computer
executes to achieve a particular objective. [MDESE,
2016]
program (v): To produce a program by programming.
programming: The craft of analyzing problems and
designing, writing, testing, and maintaining programs to
solve them. [MDESE, 2016]

Remixing To create a new version of (a recording) by recombining
and re- editing the elements of the existing recording
and often adding material such as new vocals or
instrumental tracks.

Security See the definition for cybersecurity.

Security Threats A threat is something that may or may not happen but has the
potential to cause serious damage. Threats can lead to
attacks on computer systems, networks and more.

Sequence One of the three basic logic structures in computer
programming. The other two logic structures are selection
and loop. In a sequence structure, an action, or event, leads
to the next ordered action in a predetermined order.

Software Programs that run on a computing system, computer,
or other computing device.

Storage/Store (place) A place, usually a device, into which data can be
entered, in which the data can be held, and from which the
data can be retrieved at a later time. [FOLDOC]
(process) A process through which digital data is saved
within a data storage device by means of computing
technology. Storage is a mechanism that enables a
computer to retain data, either temporarily or permanently.
[Techopedia]

30 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

System A collection of elements or components that work
together for a common purpose. [TechTarget]
See also the definition for computing system.

Test Case A set of conditions or variables under which a tester will
determine whether the system being tested satisfies
requirements or works correctly. [STF]

Troubleshooting A systematic approach to problem-solving that is often used
to find and resolve a problem, error, or fault within software
or a computing system. [Techopedia, TechTarget]

Unauthorized Access Unauthorized access is when someone gains access to a
website, program, server, service, or other system using
someone else's account or other methods. For example, if
someone kept guessing a password or username for an
account that was not theirs until they gained access it is
considered unauthorized access.

Unplugged Computer Science without a computer.

Variables A symbolic name that is used to keep track of a value that
can change while a program is running. Variables are not
just used for numbers; they can also hold text, including
whole sentences (strings) or logical values (true or false). A
variable has a data type and is associated with a data
storage location; its value is normally changed during the
course of program execution. [CAS, 2013; Techopedia]
Note: This definition differs from that used in math.

31 | P a g e

	Introduction:
	Each student in secondary public schools will have access to robust and varied computer science courses by 2022. All students will enter secondary schools with exposure to computational thinking and competencies in digital literacy. This begins in our...

	Strand Language3F
	Computing Systems (CS):
	Network and the Internet (NI):
	Data and Analysis (DA):
	Algorithms and Programming (AP):
	Impacts of Computing (IC):

	Practice Language4F :
	Practice 1: Fostering an Inclusive Computing Culture
	Practice 2: Collaborating Around Computing
	Practice 4: Developing and Using Abstractions
	Practice 5: Creating Computational Artifacts
	Practice 6: Testing and Refining Computational Artifacts
	Practice 7: Communicating About Computing
	Computing Systems (CS):
	Network and the Internet (NI):
	Algorithms and Programming (AP):
	Impacts of Computing (IC):
	Computing Systems (CS):
	Data and Analysis (DA):
	Algorithms and Programming (AP):
	Impacts of Computing (IC):
	Computing Systems (CS):
	Network and the Internet (NI):
	Data and Analysis (DA):
	Algorithms and Programming (AP):
	Computing Systems (CS):
	Network and the Internet (NI):
	Data and Analysis (DA):
	Algorithms and Programming (AP):
	Standard 9/10.AP.7 Iteratively evaluate and refine a computational artifact to enhance its performance, reliability, usability, and accessibility. (Practice 6: Testing and Refining Computational Artifacts)
	Impacts of Computing (IC):
	Standard 9/10.IC.2 Understand that bias is always introduced when creating computational artifacts, identify ways that this unintended bias may impact equity, and then evaluate methods for alleviating that impact. (Practice 1: Fostering an Inclusive C...
	Standard 9/10.IC.3 Identify solutions to problems in other content areas using established algorithms. (Practice 1: Fostering an Inclusive Computing Culture; Practice 2: Collaborating Around Computing)
	Network and the Internet (NI):
	Data and Analysis (DA):
	Algorithms and Programming (AP):
	Impacts of Computing (IC):

Accessibility Report

		Filename:

		612ComputerScienceStandards.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 29

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Skipped		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

